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Abstract. In recent work, Sadakane and Grossi [SODA 2006] introduced a scheme to represent any
sequence S = s1s2 . . . sn, over an alphabet of size σ, using nHk(S) + O( n

log
σ

n
(k log σ + log log n)) bits

of space, where Hk(S) is the k-th order empirical entropy of S. The representation permits extracting
any substring of size Θ(log

σ
n) in constant time, and thus it completely replaces S under the RAM

model. This is extremely important because it permits converting any succinct data structure requiring
o(|S|) = o(n log σ) bits in addition to S, into another requiring nHk(S) + o(n log σ) (overall) for any
k = o(log

σ
n). They achieve this result by using Ziv-Lempel compression, and conjecture that the result

can in particular be useful to implement compressed full-text indexes.
In this paper we extend their result, by obtaining the same space and time complexities using a simpler
scheme based on statistical encoding. We show that the scheme supports appending symbols in constant
amortized time. In addition, we prove some results on the applicability of the scheme for full-text self-
indexing.

1 Introduction

Recent years have witnessed an increasing interest on succinct data structures, motivated mainly
by the growth over time on the size of textual information. This has triggered a search for less
space-demanding data structures bounded by the entropy of the original text. Their aim is to rep-
resent the data using as little space as possible, yet efficiently answering queries on the represented
data. Several results exist on the representation of sequences [9, 3, 18, 19], trees [15, 6], graphs [15],
permutations and functions [14, 16], and texts [8, 20, 4, 7, 17, 5], to name a few.

Several of those succinct data structures are built over a sequence of symbols S[1, n] = s1s2 . . . sn,
from an alphabet A of size σ, and require only o(|S|) = o(n log σ) additional bits in addition to S
itself (S requires n log σ bits3). A more ambitious goal is a compressed data structure, which takes
overall space proportional to the compressed size of S and still is able to recover any substring of
S and manipulate the data structure.

A very recent result by Sadakane and Grossi [22] gives a tool to convert any succinct data
structure on sequences into a compressed data structure. More precisely, they show that S can
be encoded using nHk(S) + O( n

logσ n(k log σ + log log n)) bits of space4, where Hk(S) is the k-th

order empirical entropy of S [12]. (Hk(S) is a lower bound to the space achieved by any k-th
order compressor applied to S.) Their structure permits retrieving any substring of S of Θ(logσ n)
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3 In this paper log stands for log2.
4 The term k log σ appears as k in [22], but this is a mistake [21]. The reason is that they take from [10] an extra

space of the form Θ(kt + t) as stated in Lema 2.3, whereas the proof in Theorem A.4 gives a term of the form
kt log σ + Θ(t).
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symbols in constant time. Under the RAM model of computation this is equivalent to having S in
explicit form.

In particular, for sufficiently small k = o(logσ n), the space is Hk(S) + o(n log σ). Any succinct
data structure that requires o(n log σ) bits in addition to S can thus be replaced by a compressed
data structure requiring nHk(S)+ o(n log σ) bits overall, whereas any access to S is replaced by an
access to the novel structure. Their scheme is based on Ziv-Lempel encoding and is rather involved.

In this paper we show how the same result can be achieved by much simpler means. We present
an alternative scheme based on k-th order modeling plus statistical encoding, just as a normal
statistical compressor would process S. By adding some extra structures, we are able of retrieving
any substring of S of Θ(logσ n) symbols in constant time. Although any statistical encoder works, we
obtain the best results (matching exactly those of Sadakane and Grossi) using Arithmetic encoding
[1]. Furthermore, we show that we can append symbols to S without changing the space complexity,
in constant amortized time per symbol.

In addition, we study the applicability of this technique to full-text self-indexes. Compressed
self-indexes replace a text T [1, n] by a structure requiring O(nH0(T )) or O(nHk(T )) bits of space.
In order to provide efficient pattern matching over T , many of those structures [4, 17, 5] achieve
space proportional to nHk(T ) by first applying the Burrows-Wheeler Transform [2] over T , S[1, n] =
bwt(T ), and then struggling to represent S in efficient form. An additional structure of o(|S|) bits
gives the necessary functionality to implement the search. One could thus apply the new structure
over S, so that the overall structure requires nHk(S)+ o(|S|) bits. Yet, the relation between Hk(S)
and Hk(T ) remains unknown. In this paper we move a step forward by proving a positive result:
H1(S) ≤ Hk(T ) log σ + o(1) for small k = o(logσ n). We note that, for example, the Run-Length
FM-Index [11] achieves precisely nHk(T ) log σ+O(n) bits of space by rather involved means (albeit
for larger k). This result shows that (essentially) the same can be achieved by applying the new
structure over S.

Several indexes, however, compress S = bwt(T ) by means of a wavelet tree [7] on S, wt(S).
This is a balanced tree storing several binary sequences. Each such sequence B can be represented
using |B|H0(B) bits of space. If we call nH0(wt(S)) the overall resulting space, it turns out that
nH0(wt(S)) = nH0(S). A natural idea advocated in [22] is to use a k-th order representation for the
binary sequences B, yielding space nHk(wt(S)). Thus the question about the relationship between
Hk(wt(S)) and Hk(S) is raised. In this paper we exhibit examples where either is larger than the
other. In particular, we show that when moving from wt(S) to S, the k-th order entropy grows at
least by a factor of Θ(log k).

2 Background and notation

Hereafter we assume that S[1, n] = S1,n = s1s2 . . . sn is the sequence we wish to encode and query.
The symbols of S are drawn from an alphabet A = {a1, . . . , aσ} of size σ. We write |w| to denote
the length of sequence w. We define na

S de number of times that symbol a ∈ A appears in S.

Let B[1, n] be a binary sequence. Function rankb(B, i) returns the number of times b appears
in the prefix B[1, i]. Function selectb(B, i) returns the position of the i-th appearance of b within
sequence B. Both rank and select can be computed in constant time using o(n) bits of space in
addition to B [9, 13].
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2.1 The k-th order empirical entropy

The empirical entropy resembles the entropy defined in the probabilistic setting (for example, when
the input comes from a Markov source). However, the empirical entropy is defined for any string
and can be used to measure the performance of compression algorithms without any assumption
on the input [12].

The empirical entropy of k-th order is defined using that of zero-order. This is defined as

H0(S) = −
∑

a∈A

na
S

n
log2(

na
S

n
) (1)

with na
S the number of occurrences of symbol a in sequence S. This definition extends to k > 0

as follows. Let Ak be the set of all sequences of length k over A. For any string w ∈ Ak, called a
context of size k, let wS be the string consisting of the concatenation of characters following w in
S. Then, the k-th order empirical entropy of S is

Hk(S) =
1

n

∑

w∈Ak

|wS |H0 (wS) . (2)

The k-th order empirical entropy captures the dependence of symbols upon their context. For
k ≥ 0, nHk(S) provides a lower bound to the output of any compressor that considers a context of
size k to encode every symbol of S. Note that the uncompressed representation of S takes n log σ
bits, and that 0 ≤ Hk(S) ≤ Hk−1(S) ≤ . . . ≤ H1(S) ≤ H0(S) ≤ log σ.

2.2 Statistical encoding

We are interested in the use of semi-static statistical encoders in this paper. So our problem consists
in: given a sequence S[1, n], and a k-th order modeler that yields probabilities p1, p2, . . . , pn for each
of those symbols, encode the successive symbols of S trying to use −pi log pi bits for si. If we reach
exactly −pi log pi bits, the overall number of bits produced is nHk(S).

Different encoders provide different approximations to the ideal −pi log pi bits. The simplest
encoder is probably Huffman coding [1], while the best one, from the point of view of the number
of bits generated, is Arithmetic coding [1]. There are other statistical encoders such as Shannon-
Fano Coding [1].

Given a statistical encoder E and a sequence S, we call E(S) the bitwise output of E over S and
|E(S)| its bit length . We call fk(E,S) = |E(S)|−nHk(S) the extra space in bits needed to encode S
using E, on top of the k-th order empirical entropy of S. For example, the wasted space of Huffman
encoding is bounded by 1 bit per symbol, and thus fk(Huffman, S) < |S| (tighter bounds exist but
are not useful for this paper [1]). On the other hand, Arithmetic encoding approaches −pi log pi as
closely as desired, requiring only at most two extra bits to terminate the whole sequence [1, Section
5.26]. Thus fk(Arithmetic, S) ≤ 2.

2.3 Implementing succinct full-text self-indexes

A succinct full-text index provides fast search functionality using a space proportional to that of
the text itself. A less space-demanding index, in particular, using space proportional to that of the
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compressed text is known as a compressed full-text index. Those indexes that contain sufficient the
information to recreate the original text are known as self-indexes. An example of the latter ones
is the FM-index family [4, 17, 5] based on the Burrows-Wheeler Transform [2] and the concept of
backward search provided by the LF-mapping [2, 4].

The Burrows-Wheeler Transform is a reversible transformation from strings to strings.

Definition 1. Given a text T1,n and its suffix array SA[1, n], the Burrows-Wheeler transform
(BWT) of T , bwt(T ) = T bwt, is defined as T bwt

i = TSA[i]−1, except when SA[i] = 1, where T bwt
i =

Tn.

That is, T bwt is formed by sequentially traversing the suffix array SA and concatenating the
characters that precede each suffix. Although the transformation does not compress the text, the
transformed text is easier to compress by local optimization methods [12].

A cyclic shift of T1,n is any string of the form Ti,nT1,i−1. Let M be a matrix containing all the
cyclic shifts of T in lexicographical order. Let F be the first and L the last column of M . Assuming
T is terminated with a special character “$”, different from any other, the cyclic shifts Ti,nT1,i−1

are sorted exactly like the suffixes Ti,n. Thus M is essentially the suffix array A of T , and L is the
list of characters preceding each suffix, that is, L = T bwt. On the other hand, F is a sorted list of
all the characters in T .

In order to reverse the BWT, we need to be able two know, given a character in L, where it
appears in F . This is called the LF-mapping [2, 4].

Definition 2. Given strings F and L resulting from the BWT of text T , the LF-mapping is a
function LF : [1, n] −→ [1, n], such that LF (i) is the position in F where character L[i] occurs.

The following lemma gives the formula for the LF-mapping [2, 4].

Lemma 1. Let T1,n be a text and F and L be the result of its BWT. Let C : A −→ [1, n] and OccL :
A × [1, n] −→ [1, n], such that C(c) is the number of occurrences in T of characters alphabetically
smaller than c, and OccL(c, i) is the number of occurrences of character c in L[1, i]. Then, it holds
LF (i) = C(L[i]) + OccL(L[i], i).

The LF-mapping is also the key for the search procedures of full-text indexes [4, 17, 5]. As C
needs only O(σ log n) bits, the main issue is how to compute OccL(c, i) fast using little space.

There are different ways of implement OccL(c, i). One way consists in using the wavelet tree [7]
of S = bwt(T ) = L.

Definition 3. Given a sequence S[1, n] the wavelet tree wt(S) [7] built on S uses nH0(S) +
O(n log log n/ logσ n) bits of space and supports in O(log σ) time the following operations:

– given q, 1 ≤ q ≤ n, the retrieval of the character S[q];
– given c ∈ A and q, 1 ≤ q ≤ n, the computation of OccS(c, q).

The wavelet tree is a perfect binary tree of height ⌈log σ⌉, built on the alphabet symbols, such
that the root represents the whole alphabet and each leaf represents a distinct alphabet symbol.
If a node v represents alphabet symbols in the range Av = [i, j], then its left child vl represents
Avl = [i, i+j

2 ] and its right child vr represents Avr = [ i+j
2 + 1, j].
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We associate to each node v the subsequence Sv of S formed by the characters in Av. However,
sequence Sv is not really stored at the node. Instead, we store a bit sequence Bv telling whether
characters in Sv go left or right, that is, Bv

i = 1 iff Sv
i ∈ Avr .

All queries on S are easily answered in O(log σ) time with the wavelet tree, providing each bit
vector Bv with additional o(|Bv|) bits to answer rank and select in constant time [9, 13].

3 A new entropy-bound succinct data structure

Given a sequence S[1, n] over an alphabet A of size σ, we encode S into a compressed data structure
S′ within entropy bounds. To perform all the original operations over S under the RAM model, it
is enough to allow extracting any b = 1

2 logσ n consecutive symbols of S, using S′, in constant time.

3.1 Data structures for substring decoding

We describe our data structure to represent S in nHk(S) + O( n
logσ n(k log σ + log log n)) bits, and

to permit the access of any substring of size b = ⌊1
2 logσ n⌋ in constant time. This structure is built

using any statistical encoder E as described in Section 2.2.

Structure. We divide S into blocks of length b = ⌊1
2 logσ n⌋ symbols. Each block will be represented

using at most b′ = ⌊1
2 log n⌋ bits (and hopefully less). We define the following sequences indexed by

block number i = 0, . . . , ⌊n/b⌋:

– Si = S[bi + 1, b(i + 1)] is the sequence of symbols forming the i-th block of S.

– Ci = S[bi− k +1, bi] is the sequence of symbols forming the k-th order context of the i-th block
(a dummy value is used for C0).

– Pi = E(Si) is the encoded sequence for the i-th block of S, initializing the k-th order modeler
with context Ci.

– µi = |Pi| is the size in bits of Pi.

– P̃i =

{
Si if µi > b′

Pi otherwise
, is the shortest sequence among Pi and Si.

– µ̃i = |P̃i| ≤ min(b′, µi) is the size in bits of P̃i.

The idea behind P̃i is to ensure that no encoded block is longer than b′ bits (which could happen
if a block contains many infrequent symbols). These special blocks are encoded explicitly.

Our compressed representation of S stores the following information:

– W [0, ⌊n/b⌋]: A bit array such that

W [i] =

{
0 if µi > b′

1 otherwise
,

with the additional o(n/b) bits to answer rank queries over W in constant time [9, 13].

– C[1, rank(W, ⌊n/b⌋)]: C[rank(W, i)] = Ci, that is, the k-th order context for the i-th block of
S iff µi ≤ b′, with 1 ≤ i ≤ ⌊n/b⌋.

– U = P̃0P̃1 . . . P̃⌊n/b⌋: A bit sequence obtained by concatenating all the variable-length P̃i.
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– T : Ak×2b
′

−→ 2b: A table defined as T [α, β] = γ, where α is any context of size k, β represents
any encoded block of b′ bits at most, and γ represents the decoded form of β, truncated to the
first b symbols (as less than the b′ bits will be usually necessary to obtain the b symbols of the
block).

– Information to answer where each P̃i starts within U . We group together every c = ⌈log n⌉
consecutive blocks to form superblocks and store two tables:

• Rg[0, ⌊n/(bc)⌋] contains the absolute position of each superblock.

• Rl[0, ⌊n/b⌋] contains the relative position of each block with respect to the beginning of its
superblock.

3.2 Substring decoding algorithm

We want to retrieve q = S[i, i+ b−1] in constant time. To achieve this, we take the following steps:

1. We calculate j = i div b and j′ = (i + b − 1) div b.

2. We calculate h = j div c, h′ = (j +1) div c and u = U [Rg[h]+Rl[j], Rg[h
′]+Rl[j +1]−1], then

– if W [j] = 0 then we have Sj = u.

– if W [j] = 1 then we have Sj = T [C[rank(W, j)], u′], where u′ is u padded with b′ − |u|
dummy bits.

We note that |u| ≤ b′ and thus it can be manipulated in constant time.

3. If j′ 6= j then we repeat Step 2 for j′ = j+1 and obtain Sj′. Then, q = Sj[i−jb+1, b] Sj′ [1, i−jb]
is the solution.

Lemma 2. For a given sequence S[1, n] over an alphabet A of size σ, we can access any substring
of S of b symbols in O(1) time using the data structures presented in Section 3.1.

3.3 Space requirement

Let us now consider the storage size of our structures.

– We use the constant-time solution to answer the rank queries [9, 13] over W , totalizing 2n
logσ n(1+

o(1)) bits.

– Table C requires at most 2n
logσ nk log σ bits.

– Let us consider table U . |U | =
∑⌊n/b⌋

i=0 |P̃i| ≤
∑⌊n/b⌋

i=0 |Pi| = nHk(S) +
∑⌊n/b⌋

i=0 fk(E,Si), which
depends on the statistical encoder E used. For example, in the case of Huffman coding, we have
fk(Huffman, Si) < b, and thus we achieve nHk(S) + n bits. For the case of Arithmetic coding,
we have fk(Arithmetic, Si) ≤ 2, and thus we have nHk(S) + 4n

logσ n bits.

– The size of T is σk2b′b log σ = σk n1/2 log n
2 bits.

– Finally, let us consider tables Rg and Rl. Table Rg has ⌈n/(bc)⌉ entries of size ⌈log n⌉, totalizing
2n

logσ n bits. Table Rl has ⌈n/b⌉ entries of size ⌈log(b′c)⌉, totalizing 4n log log n
logσ n bits.

By considering that any substring of Θ(logσ n) symbols can be extracted in constant time by
applying O(1) times the procedure of Section 3.2, we have the final theorem.



www.manaraa.com

Theorem 1. Let S[1, n] be a sequence over an alphabet A of size σ. Our data structure uses
nHk(S) + O( n

logσ n(k log σ + log log n)) bits of space for any k < (1 − ǫ) logσ n and any constant

0 < ǫ < 1, and it supports access to any substring of S of size Θ(logσ n) symbols in O(1) time.

Note that, in our scheme, the size of T can be neglected only if k < (1
2 − ǫ) logσ n, but this can

be pushed as close to 1 as desired by choosing b = 1
s logσ n for constant s ≥ 2.

Corollary 1. The previous structure takes space nHk(S) + o(n log σ) if k = o(logσ n).

These results match exactly those of [22], once one corrects their k to k log σ as explained.
Note that we are storing some redundant information that can be eliminated. The last characters

of block Si are stored both within P̃i and as Ci+1. Instead, we can choose to explicitly store the
first k characters of all blocks Si, and encode only the remaining b−k symbols, Si[k+1, b], either in
explicit or compressed form. This improves the space in practice, but in theory it cannot be proved
to be better than the scheme we have given.

4 Supporting appends

We can extend our scheme to support appending symbols, maintaining the same space and query
complexity, with each appended symbol having constant amortized cost. Assume our current static
structure holds n symbols. We use a buffer of n′ = n/ log n symbols where we store symbols
explicitly. When the buffer is full we use our entropy-bound succinct data structure (EBDS, Section
3) to represent those n′ symbols and then we empty the buffer. We repeat this until we have log n
EBDS. At this moment we reenconde all the structures plus our original n symbols, generating a
new single EBDS, and restart the process with 2n symbols.

Data structures. We describe the additional structures needed to append symbols to the EBDS.

– BF [1, n′] is the sequence of at most n′ = n/ log n uncompressed symbols.
– APi is the i-th EBDS, with 0 ≤ i ≤ log n. N is the number of EBDS we currently have. We call

ASi the sequence APi represents. AP0 is the original EBDS. So |AS0| = n and |ASi| = n/ log n,
i > 0.

– WA[1, 2n]: A bit array marking the initial position of each APi and BF in AS0AS1 . . . ASNBF ,
with the additional o(n) bits to answer rank queries over WA in constant time [9, 13].

Substring decoding algorithm. We want to retrieve q = S[i, i + b− 1]. To achieve this, we take
the following steps:

– We calculate t = rank(WA, i) and t′ = rank(WA, i + b − 1). In this way, we obtain the EBDS
where q belongs. The case when part of q belongs to BF is trivially solved.

– If t = t′ we obtain q as in Section 3.2. Otherwise, we calculate toff = i− select(WA, t) + 1 and
decode q1, the last n′− i+1 ≤ b symbols of APt. Then we, calculate t′off = i+b−select(WA, t′)
and decode q2, the first t′off symbols of APt′ . Finally, we obtain q = q1q2.

Note that we can extract b symbols in constant time from any APi and BF , the first because
Θ(logσ(n/ log n)) = Θ(logσ n) and the second because they are explicit.
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Construction time Just after we reencode everything we have that n/2 symbols have been
reencoded one time, n/4 symbols 2 times, n/8 symbols 3 times and so on. The total number of
reencodings is

∑

i≥1 n i
2i = 2n. On the other hand, we are using a semi-static statistical encoder,

which takes O(1) time to encode one symbol. Then we conclude each symbols have an amortized
cost of appending of O(1).

Space requirement. Let us now consider the storage of the appended structures.

– Table BF requires n/ logσ n bits
– We use the constant-time solution to answer the rank and select queries [13] over WA, totalizing

2n(1 + o(1)) bits.

– Each APi is an EBDS, each one using |ASi|Hk(ASi) + O( |ASi|
logσ |ASi|

(k log σ + log log |ASi|)) bits
of space.

Lemma 3. The space requirement of all APi, where 0 ≤ i ≤ log n, is
∑log n

i=0 |APi| ≤ |S AS1 . . . ASN |
Hk(S AS1 . . . ASN ) + O( n

logσ n(k log σ + log log n)) + O(σk+1 log2 n) + O(k log2 n) bits.

Proof. Consider summing any two entropies (recall Eqs. (1) and (2)).
|AS1|Hk(AS1) + |AS2|Hk(AS2) =

∑

w∈Ak |wAS1
|H0(wAS1

) +
∑

w∈Ak |wAS2
|H0(wAS2

)

≤
∑

w∈Ak(log
( |wAS1

|

|n
a1
AS1

|,|n
a2
AS1

|,...,|naσ

AS1
|

)
+ log

( |wAS2
|

|n
a1
AS2

|,|n
a2
AS2

|,...,|naσ

AS2
|

)
) + O(σk+1 log n)

≤
∑

w∈Ak log
( |wAS1

|+|wAS2
|

|n
a1
AS1

|+|n
a1
AS2

|,|n
a2
AS1

|+|n
a2
AS2

|,...|naσ

AS1
|+|naσ

AS2
|

)
+ O(σk+1 log n)

≤ |AS1AS2|Hk(AS1AS2) + O(σk+1 log n) + O(k log n)

where O(σk+1 log n) comes from the relationship between the zero-th order entropy and the
combinatorials, and O(k log n) comes from considering the symbols in the border between AS1 ans
AS2. Note that σk+1 log n = o(n) if k < (1 − ǫ) logσ n. Then the lemma follows by adding up the
N ≤ log n EBDSs.

Theorem 2. The structure of Theorem 1 supports appending symbols in constant amortized time
and retains the same space and query time complexities, being n the current size of the structure.

5 Application to full-text indexing

In this section we give some positive and negative results about the application of the technique
to full-text indexing, as explained in the Introduction. We have a text T [1, n] over alphabet A and
wish to compress a transformed version X of T with our technique. Then, the question is how does
Hk(X) relate to Hk(T ).

5.1 The Burrows-Wheeler Transform

The Burrows-Wheeler Transform, S = bwt(T ), is used by many compressed full-text self-indexes
[8, 20, 4, 7, 17, 5, 11]. We have covered it in Section 2.3.

We show that there is a relationship between the k-th order entropy of a text T and the first
order entropy of S = bwt(T ). For this sake, we will compress S with a first-order compressor, whose
output size is an upper bound to nH1(S).
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A run in S is a maximal substring formed by a single letter. Let rl(S) be the number of runs
in S. In [11] they prove that rl(S) ≤ nHk(T ) + σk for any k. Our first-order encoder exploits this
property, as follows:

– If i > 1 and si = si−1 then we output bit 0.

– Otherwise we output bit 1 followed by si in plain form (log σ bits).

Thus we encode each symbol of S by considering only its preceding symbol. The total number of

bits is n+rl(S) log σ ≤ n(1+Hk(S) log σ+ σk log σ
n ). The latter term is negligible for k < (1−ǫ) logσ n,

for any 0 < ǫ < 1. On the other hand, the total space obtained by our first-order encoder cannot
be less than nH1(S). Thus we get our result:

Lemma 4. Let S = bwt(T ), where T [1, n] is a text over an alphabet of size σ. Then H1(S) ≤
1 + Hk(T ) log σ + o(1) for any k < (1 − ǫ) logσ n and any constant 0 < ǫ < 1.

We can improve this upper bound if we use Arithmetic encoding to encode the 0 and 1 bits
that distinguish run heads. Their zero-order probability is p = Hk(T ) + σk

n , thus the 1 becomes
−p log p − (1 − p) log(1 − p) ≤ 1. Likewise, we can encode the run heads si up to their zero-order
entropy. These improvements, however, do not translate into clean formulas.

This shows, for example, that we can get (at least) about the same results of the Run-Length
FM-Index [11] by compressing bwt(T ) using our structure.

5.2 The wavelet tree

Several FM-Index variants [11, 5] use wavelet trees to represent S = bwt(T ), while others [7] use
them for other purposes. As explained in Section 2.3, wt(S) is composed of several binary sequences.
By compressing each such sequence B to |B|H0(B) bits, one achieves nH0(S) bits overall. The
natural question is, thus, whether we can prove any bound on the overall space if we encode
sequences B to |B|Hk(B) bits. We present next two negative examples.

– First we show a case where Hk(S) < Hk(wt(S)). We choose S = (ak
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ν1 = (1k0k0k)n ν2 = (1k0k)n

ν0 = (1k0k0k1k0k)n

a2a3a0a1

Let us compute Hk(S) according to Section 2.1. Note that H0(wS) = 0 for all contexts except
w = ak

0 , where wS = a2(a3a2)
n−1$, being “$” a sequence terminator. Thus |wS | = 2

5kn and

H0(wS) = − n
2n log n

2n − n−1
2n log n−1

2n − 1
2n log 1

2n = 1 + O( log n
n ). Therefore Hk(S) ≃ 2

5k .

On the other hand, Hk(wt(S)) =
∑2

i=0 Hk(νi) ≃
2

5k
log k

︸ ︷︷ ︸
ν0

+
1

3k
+

log k

3k
︸ ︷︷ ︸

ν1

, as Hk(ν2) ≃ 0.

Therefore, in this case, Hk(S) < Hk(wt(S)), by an O(log k) factor.
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– Second, we show a case where Hk(S) > Hk(wt(S)). Now we choose S = (ak
0a

k
3a

k
0a

k
2)

n, then

wt(S) =
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10

ν1 = (0k0k)n ν2 = (1k0k)n

ν0 = (0k1k0k1k)n

a2a3a0a1

In this case, Hk(S) ≃ 2
4k and Hk(wt(S)) =

∑2
i=0 Hk(νi) = O( log n

n ). Thus Hk(S) > Hk(wt(S))
by a factor of O(n/(k log n)).

Lemma 5. The ratio between the k-th order entropy of the wavelet tree representation of a sequence
S, Hk(wt(S)), and that of S itself, Hk(S), can be at least Ω(log k). More precisely, Hk(wt(S))/Hk(S)
can be Ω(log k) and Hk(S)/Hk(wt(S)) can be Ω(n/(k log n)).

What is most interesting is that Hk(wt(S)) can be Θ(log k) times larger than Hk(S). We have
not been able to produce a larger gap. Whether Hk(wt(S)) = O(Hk(S) log k) remains open.

6 Conclusions

We have presented a scheme based on k-th order modeling plus statistical encoding to convert
any succinct data structure on sequences into a compressed data structure. This structure permits
retrieving any string of S of Θ(logσ n) symbols in constant time. This is an alternative to the first
work achieving the same result [22], which is based on Ziv-Lempel compression. We also show how
to append symbols to the original sequence within the same space complexity and with constant
amortized cost per appended symbol. This method also works on the structure presented in [22].

We also analyze the behavior of this technique when applied to full-text self-indexes, as advo-
cated in [22]. Many compressed self-indexes achieve space proportional to nHk(T ) by first applying
the Burrows-Wheeler Transform [2] over T , S[1, n] = bwt(T ). In this paper, we show a relationship
between the entropies of H1(S) and Hk(T ). More precisely, H1(S) ≤ Hk(T ) log σ + o(1) for small
k = o(logσ n). On the other hand, several indexes represent S = bwt(T ) as a wavelet tree [7] on S,
wt(S). We show in this paper that Hk(wt(S)) can be at least Θ(log k) times larger than Hk(S).
This means that, by applying the new technique to compress wavelet trees, we have no guarantee
of compressing the original sequence more than n min(H0(S), O(Hk(T ) log k)). Yet, we do have
guarantees if we compress S directly.

There are several future challenges on k-th order entropy-bound data structures: (i) making
them fully dynamic (we have shown how to append symbols); (ii) better understanding how the
entropies evolve upon transformations such bwt or wt; (iii) testing them in practice.

Acknowledgment. We thank K. Sadakane and R. Grossi for providing us article [22].
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